- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Hogan, J_Aaron (2)
-
Comita, Liza_S (1)
-
Garwood, Nancy_C (1)
-
Lammerant, Roel (1)
-
Matlaga, David (1)
-
Metz, Margaret_R (1)
-
Muscarella, Robert (1)
-
Queenborough, Simon_A (1)
-
Rodriguez‐Valle, Celimar (1)
-
Uriarte, María (1)
-
Valencia, Renato (1)
-
Vleminckx, Jason (1)
-
Wright, S_Joseph (1)
-
Zambrano, Milton (1)
-
Zimmerman, Jess_K (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Examining the cues and drivers influencing seed production is crucial to better understand forest resilience to climate change. We explored the effects of five climatic variables on seed production over 22 years in an everwet Amazonian forest, by separating direct effects of these variables from indirect effects mediated through flower production. We observed a decline in seed production over the study period, which was primarily explained by direct effects of rising nighttime temperatures and declining average vapour pressure deficits. Higher daytime temperatures were positively related to seed output, mainly through a flower‐mediated effect, while rainfall effects on seed production were more nuanced, showing either positive or negative relationships depending on the seasonal timing of rains. If these trends continue, they are likely to lead to significant changes in forest dynamics, potentially impacting both forest structure and species composition.more » « less
-
Matlaga, David; Lammerant, Roel; Hogan, J_Aaron; Uriarte, María; Rodriguez‐Valle, Celimar; Zimmerman, Jess_K; Muscarella, Robert (, Ecology and Evolution)Abstract Droughts are predicted to become more frequent and intense in many tropical regions, which may cause shifts in plant community composition. Especially in diverse tropical communities, understanding how traits mediate demographic responses to drought can help provide insight into the effects of climate change on these ecosystems. To understand tropical tree responses to reduced soil moisture, we grew seedlings of eight species across an experimental soil moisture gradient at the Luquillo Experimental Forest, Puerto Rico. We quantified survival and growth over an 8‐month period and characterized demographic responses in terms of tolerance to low soil moisture—defined as survival and growth rates under low soil moisture conditions—and sensitivity to variation in soil moisture—defined as more pronounced changes in demographic rates across the observed range of soil moisture. We then compared demographic responses with interspecific variation in a suite of 11 (root, stem, and leaf) functional traits, measured on individuals that survived the experiment. Lower soil moisture was associated with reduced survival and growth but traits mediated species‐specific responses. Species with relatively conservative traits (e.g., high leaf mass per area), had higher survival at low soil moisture whereas species with more extensive root systems were more sensitive to soil moisture, in that they exhibited more pronounced changes in growth across the experimental soil moisture gradient. Our results suggest that increasing drought will favor species with more conservative traits that confer greater survival in low soil moisture conditions.more » « less
An official website of the United States government
